Dehydrogenation Selectivity of Ethanol on Close-Packed Transition Metal Surfaces: A Computational Study of Monometallic, Pd/Au, and Rh/Au Catalysts

نویسندگان

  • Hao Li
  • Graeme Henkelman
چکیده

Ethanol (EtOH) decomposition has been widely studied in recent years. However, the initial dehydrogenation selectivity on catalytic surfaces, which plays a crucial role in EtOH partial oxidation and steam reforming, is not well understood. Here, density functional theory (DFT) was used to calculate the initial dehydrogenation selectivities of EtOH on monometallic and X/Au (X = Pd and Rh) close-packed surfaces. The energy for the initial bond scissions of O−H and αand β-C−H were calculated on each surface. The binding energy of EtOH is found to be a good reactivity descriptor for the scission of O−H and β-C−H bonds, while the binding energy of CH3CHOH is a good reaction descriptor for α-C−H bond scission. The scaling relationships between the activation energy barriers and binding energies on Pd/Au and Rh/Au surface alloys are significantly different from those of monometallic surfaces. Additionally, the specific atomic ensembles on the Pd/Au and Rh/Au surfaces have different initial dehydrogenation selectivities of EtOH. Our calculated scaling relationships were used to construct contour plots that provide predictive trends for the selectivity of the initial EtOH dehydrogenation. We conclude that the presence of specific atomic ensembles on the surface of alloy catalysts can efficiently control the reaction products of EtOH dehydrogenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic insights on ethanol dehydrogenation on Pd-Au model catalysts: a combined experimental and DFT study.

In this study, we have combined ultra-high vacuum (UHV) experiments and density functional theory (DFT) calculations to investigate ethanol (EtOH) dehydrogenation on Pd-Au model catalysts. Using EtOH reactive molecular beam scattering (RMBS), EtOH temperature-programmed desorption (TPD), and DFT calculations, we show how different Pd ensemble sizes on Au(111) can affect the mechanism for EtOH d...

متن کامل

Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer*

It has been found that the bimetallic nanoclusters often have so-called core/shell structure if they are prepared by alcohol-reduction of two kinds of noble metal ions in the presence of a water-soluble polymer like poly(N-vinyl-2-pyrolidone)(PVP), and that the core/ shell structured bimetallic nanoclusters have much higher catalytic activity than the corresponding monometallic nanoclusters. He...

متن کامل

Silica-Supported Au–Ni Catalysts for the Dehydrogenation of Propane

Inspired by previous studies on model systems, a series of silica-supported Au–Ni catalysts were prepared and tested for the conversion of propane in the presence of hydrogen. The Au–Ni/SiO2 catalysts were prepared by successive impregnation, i.e. Ni was deposited first followed by Au. TEM/EDX results confirmed the presence of bimetallic Au–Ni nanoparticles. The dehydrogenation of propane to pr...

متن کامل

A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.

We describe an accelerated density functional theory (DFT)-based computational strategy to determine trends in the decomposition of glycerol via elementary dehydrogenation, C-C, and C-O bond scission reactions on close-packed transition metal surfaces. Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol dehydrogenation on Pd(111), Rh(111), Cu(111) and Ni(111) is...

متن کامل

Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.

Dissociation of O2 into atomic oxygen is a significant route for O2 activation in metal-catalyzed oxidation reactions. In this study, we systematically investigated the mechanisms of O2 dissociation and the promoting role of water on nine transition metal (Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) surfaces. It was found that on clean metal surfaces, the dissociation of O2 was most favorable on Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017